mrpro.operators.DictionaryMatchOp
- class mrpro.operators.DictionaryMatchOp[source]
Bases:
Operator[Tensor,tuple[Unpack[Tin]]]Dictionary Matching Operator.
This operator can be used for dictionary matching, for example in magnetic ressonance fingerprinting.
It performs absolute normalized dot product matching between a dictionary of signals, i.e. find the entry \(d^*\) in the dictionary maximizing \(\left|\frac{d}{\|d\|} \cdot \frac{y}{\|y\|}\right|\) and returns the associated signal model parameters \(x\) generating the matching signal \(d^*=d(x)\).
At initialization, a signal model needs to be provided. Afterwards
appendwith differentxvalues should be called to add entries to the dictionary. This operator then calculates for eachxvalue the signal returned by the model. To perform a match, use__call__and supply someyvalues. The operator will then perform the dot product matching and return the associatedxvalues.- __init__(generating_function: Callable[[Unpack[Tin]], tuple[Tensor]], index_of_scaling_parameter: int | None = None)[source]
Initialize DictionaryMatchOp.
- Parameters:
generating_function (
Callable[[Unpack[TypeVarTuple]],tuple[Tensor]]) – signal model that takes n inputs and returns a signal y.index_of_scaling_parameter (
int|None, default:None) –Normalized dot product matching is insensitive to overall signal scaling. A scaling factor (e.g. the equilibrium magnetization
m0inInversionRecovery) is calculated after the dictionary matching ifindex_of_scaling_parameteris notNone.index_of_scaling_parametershould set to the index of the scaling parameter in the signal model.- Example:
For ~mrpro.operators.models.InversionRecovery the parameters are
[m0, t1]and thereforeindex_of_scaling_parametershould be set to 0. The operator will then returnt1estimated via dictionary matching andm0via a post-processing step. Ifindex_of_scaling_parameteris None, the value returned form0will be meaningless.
- __call__(input_signal: Tensor) tuple[Unpack[Tin]][source]
Perform dot-product matching.
Given an input signal (or batch of signals), this method finds the entry in the precomputed dictionary that has the highest absolute normalized dot product similarity. It then returns the set of parameters
xthat generated this dictionary entry.If
index_of_scaling_parameterwas set during initialization, the corresponding scaling parameter is estimated and inserted into the returned tuple of parameters.- Parameters:
input_signal (
Tensor) – Input signal(s) to match against the dictionary. Expected shape is(m, ...), wheremis the signal dimension (e.g., number of time points) and(...)are batch dimensions.- Returns:
A tuple of tensors representing the parameters
xfrom the dictionary that best matched the input signal(s). Each tensor in the tuple corresponds to a parameter, and their shapes will match the batch dimensions ofinput_signal.
- forward(input_signal: Tensor) tuple[Unpack[Tin]][source]
Apply forward of DictionaryMatchOp.
Note
Prefer calling the instance of the DictionaryMatchOp operator as
operator(x)over directly calling this method. See this PyTorch discussion.
- append(*x: Unpack[Tin]) Self[source]
Append
xvalues to the dictionary.- Parameters:
x (
Unpack[TypeVarTuple]) – points where the signal model will be evaluated. For signal models with n inputs, n tensors should be provided. Broadcasting is supported.- Returns:
Self
- __add__(other: Operator[Unpack[Tin], Tout]) Operator[Unpack[Tin], Tout][source]
- __add__(other: Tensor | complex) Operator[Unpack[Tin], tuple[Unpack[Tin]]]
Operator addition.
Returns
lambda x: self(x) + other(x)if other is a operator,lambda x: self(x) + other*xif other is a tensor
- __matmul__(other: Operator[Unpack[Tin2], tuple[Unpack[Tin]]] | Operator[Unpack[Tin2], tuple[Tensor, ...]]) Operator[Unpack[Tin2], Tout][source]
Operator composition.
Returns
lambda x: self(other(x))
- __mul__(other: Tensor | complex) Operator[Unpack[Tin], Tout][source]
Operator multiplication with tensor.
Returns
lambda x: self(x*other)