mrpro.operators.ElementaryProximableFunctional
- class mrpro.operators.ElementaryProximableFunctional[source]
Bases:
ElementaryFunctional,ProximableFunctionalElementary proximable functional base class.
Here, an ‘elementary’ functional is a functional that can be written as \(f(x) = \phi ( \mathrm{weight} ( x - \mathrm{target}))\), returning a real value. It does not require another functional for initialization.
A proximable functional is a functional \(f(x)\) that has a prox implementation, i.e. a function that yields \(\mathrm{argmin}_x \sigma f(x) + 1/2 \|x - y\|^2\).
- __init__(target: Tensor | None | complex = None, weight: Tensor | complex = 1.0, dim: int | Sequence[int] | None = None, divide_by_n: bool = False, keepdim: bool = False) None[source]
Initialize a Functional.
We assume that functionals are given in the form \(f(x) = \phi ( \mathrm{weight} ( x - \mathrm{target}))\) for some functional \(\phi\).
- Parameters:
target (
Tensor|None|complex, default:None) – target element - often data tensor (see above)weight (
Tensor|complex, default:1.0) – weight parameter (see above)dim (
int|Sequence[int] |None, default:None) – dimension(s) over which functional is reduced. All other dimensions ofweight ( x - target)will be treated as batch dimensions.divide_by_n (
bool, default:False) – if true, the result is scaled by the number of elements of the dimensions index bydimin the tensorweight ( x - target). If true, the functional is thus calculated as the mean, else the sum.keepdim (
bool, default:False) – if true, the dimension(s) of the input indexed bydimare maintained and collapsed to singletons, else they are removed from the result.
- abstract prox(x: Tensor, sigma: Tensor | float = 1.0) tuple[Tensor][source]
Apply proximal operator.
Yields \(\mathrm{prox}_{\sigma f}(x) = \mathrm{argmin}_{p} \sigma f(p) + 1/2 \|x-p\|_2^2\) given \(x\) and \(\sigma\).
- prox_convex_conj(x: Tensor, sigma: Tensor | float = 1.0) tuple[Tensor][source]
Apply proximal operator of convex conjugate of functional.
Yields \(\mathrm{prox}_{\sigma f^*}(x) = \mathrm{argmin}_{p} \sigma f^*(p) + 1/2 \|x-p\|_2^2\), where \(f^*\) denotes the convex conjugate of \(f\), given \(x\) and \(\sigma\).
- __add__(other: Operator[Unpack[Tin], Tout]) Operator[Unpack[Tin], Tout][source]
- __add__(other: Tensor | complex) Operator[Unpack[Tin], tuple[Unpack[Tin]]]
Operator addition.
Returns
lambda x: self(x) + other(x)if other is a operator,lambda x: self(x) + other*xif other is a tensor
- __matmul__(other: Operator[Unpack[Tin2], tuple[Unpack[Tin]]] | Operator[Unpack[Tin2], tuple[Tensor, ...]]) Operator[Unpack[Tin2], Tout][source]
Operator composition.
Returns
lambda x: self(other(x))
- __mul__(other: Tensor | complex) Operator[Unpack[Tin], Tout][source]
Operator multiplication with tensor.
Returns
lambda x: self(x*other)
- __or__(other: ProximableFunctional) ProximableFunctionalSeparableSum[Tensor, Tensor][source]
Create a ProximableFunctionalSeparableSum object from two proximable functionals.
- Parameters:
other (
ProximableFunctional) – second functional to be summed- Returns:
ProximableFunctionalSeparableSum object
- __radd__(other: Tensor | complex) Operator[Unpack[Tin], tuple[Unpack[Tin]]][source]
Operator right addition.
Returns
lambda x: other*x + self(x)
- __rmul__(scalar: Tensor | complex) ProximableFunctional[source]
Multiply functional with scalar.