mrpro.operators.ZeroPadOp
- class mrpro.operators.ZeroPadOp[source]
Bases:
LinearOperatorZero Pad operator class.
- __init__(dim: Sequence[int], original_shape: Sequence[int], padded_shape: Sequence[int]) None[source]
Zero Pad Operator class.
The operator carries out zero-padding if the
padded_shapeis larger thanorig_shapeand cropping if thepadded_shapeis smaller.
- property H: LinearOperator[source]
Adjoint operator.
Obtains the adjoint of an instance of this operator as an
AdjointLinearOperator, which itself is a anLinearOperatorthat can be applied to tensors.Note:
linear_operator.H.H == linear_operator
- property gram: LinearOperator[source]
Gram operator.
For a LinearOperator \(A\), the self-adjoint Gram operator is defined as \(A^H A\).
Note
This is the inherited default implementation.
- __call__(x: Tensor) tuple[Tensor][source]
Apply zero-padding or cropping to the input tensor.
If
padded_shape(defined at initialization) is larger thanoriginal_shapealong the specified dimensions, the tensor is zero-padded. If smaller, it is cropped. The operation is applied along the dimensions specified indim.- Parameters:
x (
Tensor) – Input tensor. Its shape along the dimensions indimshould matchoriginal_shape.- Returns:
The padded or cropped tensor. Its shape along the dimensions in
dimwill matchpadded_shape.
- adjoint(x: Tensor) tuple[Tensor][source]
Apply cropping or zero-padding (adjoint of forward).
This operation is the adjoint of the forward
ZeroPadOp. If the forward operation was padding, the adjoint is cropping. If the forward was cropping, the adjoint is zero-padding. The operation is applied along the dimensions specified indim.- Parameters:
x (
Tensor) – Input tensor. Its shape along the dimensions indimshould matchpadded_shape(from initialization).- Returns:
The cropped or padded tensor. Its shape along the dimensions in
dimwill matchoriginal_shape(from initialization).
- forward(x: Tensor) tuple[Tensor][source]
Apply forward of ZeroPadOp.
Note
Prefer calling the instance of the ZeroPadOp operator as
operator(x)over directly calling this method. See this PyTorch discussion.
- operator_norm(initial_value: Tensor, dim: Sequence[int] | None, max_iterations: int = 20, relative_tolerance: float = 1e-4, absolute_tolerance: float = 1e-5, callback: Callable[[Tensor], None] | None = None) Tensor[source]
Power iteration for computing the operator norm of the operator.
- Parameters:
initial_value (
Tensor) – initial value to start the iteration; must be element of the domain. if the initial value contains a zero-vector for one of the considered problems, the function throws anValueError.The dimensions of the tensors on which the operator operates. The choice of
dimdetermines how the operator norm is inperpreted. For example, for a matrix-vector multiplication with a batched matrix tensor of shape(batch1, batch2, row, column)and a batched input tensor of shape(batch1, batch2, row):If
dim=None, the operator is considered as a block diagonal matrix with batch1*batch2 blocks and the result is a tensor containing a single norm value (shape(1, 1, 1)).If
dim=(-1),batch1*batch2matrices are considered, and for each a separate operator norm is computed.If
dim=(-2,-1),batch1matrices withbatch2blocks are considered, and for each matrix a separate operator norm is computed.
Thus, the choice of
dimdetermines implicitly determines the domain of the operator.max_iterations (
int, default:20) – maximum number of iterationsrelative_tolerance (
float, default:1e-4) – absolute tolerance for the change of the operator-norm at each iteration; if set to zero, the maximal number of iterations is the only stopping criterion used to stop the power iteration.absolute_tolerance (
float, default:1e-5) – absolute tolerance for the change of the operator-norm at each iteration; if set to zero, the maximal number of iterations is the only stopping criterion used to stop the power iteration.callback (
Callable[[Tensor],None] |None, default:None) – user-provided function to be called at each iteration
- Returns:
An estimaton of the operator norm. Shape corresponds to the shape of the input tensor
initial_valuewith the dimensions specified indimreduced to a single value. The pointwise multiplication ofinitial_valuewith the result of the operator norm will always be well-defined.
- __add__(other: LinearOperator | Tensor | complex) LinearOperator[source]
- __add__(other: Operator[Tensor, tuple[Tensor]]) Operator[Tensor, tuple[Tensor]]
Operator addition.
Returns
lambda x: self(x) + other(x)if other is a operator,lambda x: self(x) + otherif other is a tensor
- __and__(other: LinearOperator) LinearOperatorMatrix[source]
Vertical stacking of two LinearOperators.
A&Bis aLinearOperatorMatrixwith two rows, with(A&B)(x) == (A(x), B(x)). Seemrpro.operators.LinearOperatorMatrixfor more information.
- __matmul__(other: LinearOperator) LinearOperator[source]
- __matmul__(other: Operator[Unpack[Tin2], tuple[Tensor]] | Operator[Unpack[Tin2], tuple[Tensor, ...]]) Operator[Unpack[Tin2], tuple[Tensor]]
Operator composition.
Returns
lambda x: self(other(x))
- __mul__(other: Tensor | complex) LinearOperator[source]
Operator elementwise left multiplication with tensor/scalar.
Returns
lambda x: self(x*other)
- __or__(other: LinearOperator) LinearOperatorMatrix[source]
Horizontal stacking of two LinearOperators.
A|Bis aLinearOperatorMatrixwith two columns, with(A|B)(x1,x2) == A(x1) + B(x2). Seemrpro.operators.LinearOperatorMatrixfor more information.
- __radd__(other: Tensor | complex) LinearOperator[source]
Operator addition.
Returns
lambda x: self(x) + other*x
- __rmul__(other: Tensor | complex) LinearOperator[source]
Operator elementwise right multiplication with tensor/scalar.
Returns
lambda x: other*self(x)