mrpro.operators.functionals.L1Norm
- class mrpro.operators.functionals.L1Norm[source]
Bases:
ElementaryProximableFunctionalFunctional class for the L1 Norm.
This implements the functional given by \(f: C^N \rightarrow [0, \infty), x \rightarrow \| W (x-b)\|_1\), where W is a either a scalar or tensor that corresponds to a (block-) diagonal operator that is applied to the input.
In most cases, consider setting
divide_by_ntotrueto be independent of input size.The norm of the vector is computed along the dimensions given at initialization.
- __init__(target: Tensor | None | complex = None, weight: Tensor | complex = 1.0, dim: int | Sequence[int] | None = None, divide_by_n: bool = False, keepdim: bool = False) None[source]
Initialize a Functional.
We assume that functionals are given in the form \(f(x) = \phi ( \mathrm{weight} ( x - \mathrm{target}))\) for some functional \(\phi\).
- Parameters:
target (
Tensor|None|complex, default:None) – target element - often data tensor (see above)weight (
Tensor|complex, default:1.0) – weight parameter (see above)dim (
int|Sequence[int] |None, default:None) – dimension(s) over which functional is reduced. All other dimensions ofweight ( x - target)will be treated as batch dimensions.divide_by_n (
bool, default:False) – if true, the result is scaled by the number of elements of the dimensions index bydimin the tensorweight ( x - target). If true, the functional is thus calculated as the mean, else the sum.keepdim (
bool, default:False) – if true, the dimension(s) of the input indexed bydimare maintained and collapsed to singletons, else they are removed from the result.
- __call__(x: Tensor) tuple[Tensor][source]
Compute the L1 norm of the input tensor.
Calculates \(|| W * (x - b) ||_1\), where \(W\) is
weightand \(b\) istarget. The norm is computed along dimensions specified bydim. Ifdivide_by_nis true, the result is averaged over these dimensions; otherwise, it’s summed.- Parameters:
x (
Tensor) – Input tensor.- Returns:
The L1 norm. If
keepdimis true, the dimensionsdimare retained with size 1; otherwise, they are reduced.
- forward(x: Tensor) tuple[Tensor][source]
Apply forward of L1Norm.
Note
Prefer calling the instance of the L1Norm as
operator(x)over directly calling this method. See this PyTorch discussion.
- prox(x: Tensor, sigma: Tensor | float = 1.0) tuple[Tensor][source]
Proximal Mapping of the L1 Norm.
Compute the proximal mapping of the L1 norm.
- prox_convex_conj(x: Tensor, sigma: Tensor | float = 1.0) tuple[Tensor][source]
Convex conjugate of the L1 Norm.
Compute the proximal mapping of the convex conjugate of the L1 norm.
- __add__(other: Operator[Unpack[Tin], Tout]) Operator[Unpack[Tin], Tout][source]
- __add__(other: Tensor | complex) Operator[Unpack[Tin], tuple[Unpack[Tin]]]
Operator addition.
Returns
lambda x: self(x) + other(x)if other is a operator,lambda x: self(x) + other*xif other is a tensor
- __matmul__(other: Operator[Unpack[Tin2], tuple[Unpack[Tin]]] | Operator[Unpack[Tin2], tuple[Tensor, ...]]) Operator[Unpack[Tin2], Tout][source]
Operator composition.
Returns
lambda x: self(other(x))
- __mul__(other: Tensor | complex) Operator[Unpack[Tin], Tout][source]
Operator multiplication with tensor.
Returns
lambda x: self(x*other)
- __or__(other: ProximableFunctional) ProximableFunctionalSeparableSum[Tensor, Tensor][source]
Create a ProximableFunctionalSeparableSum object from two proximable functionals.
- Parameters:
other (
ProximableFunctional) – second functional to be summed- Returns:
ProximableFunctionalSeparableSum object
- __radd__(other: Tensor | complex) Operator[Unpack[Tin], tuple[Unpack[Tin]]][source]
Operator right addition.
Returns
lambda x: other*x + self(x)
- __rmul__(scalar: Tensor | complex) ProximableFunctional[source]
Multiply functional with scalar.